6. DEPARTMENT OF ELECTRICAL/ ELECTRONICS ENGINEERING

(a) **Curriculum for B.Sc. Degree in Electrical/ Electronics Engineering**

100 LEVEL HARMATTAN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-requisite</th>
<th>Total Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE 101</td>
<td>Engineering Drawing I</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>CHM 101</td>
<td>General Chemistry I</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>CHM 107</td>
<td>Experimental Chemistry I</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>MTH 101</td>
<td>General Mathematics I (Algebra & Trigonometry)</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>PHY 101</td>
<td>General Physics I</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>PHY 107</td>
<td>Experimental Physics I</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CIT 111</td>
<td>Introduction to Information & Communication Technology</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>GNS 101</td>
<td>Use of English 1</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>LIB 101</td>
<td>Use of Library</td>
<td>-</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>FRN 221</td>
<td>Basic French</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

100 LEVEL RAIN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-requisite</th>
<th>Total Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE 102</td>
<td>Workshop Technology</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>CHM 102</td>
<td>General Chemistry II</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>CHM 108</td>
<td>Experimental Chemistry II</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>MTH 102</td>
<td>General Mathematics II (Calculus)</td>
<td>MTH101</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>MTH 104</td>
<td>General Mathematics III (Vectors, Geometry & Dynamics)</td>
<td>MTH101</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>PHY 102</td>
<td>General Physics II</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>PHY 108</td>
<td>Experimental Physics II</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CIT 112</td>
<td>Introduction to Computer Programming</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>GNS 102</td>
<td>Use of English 2</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>FRN 222</td>
<td>French for Specific Purposes</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
200 LEVEL HARMATTAN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Total Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE 201</td>
<td>Engineer in Society</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>EEE 201</td>
<td>Applied Electricity I</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>EEE 291</td>
<td>Applied Electricity Laboratory</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>MEE 201</td>
<td>Engineering Materials</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MEE 203</td>
<td>Engineering Mechanics I (Statics)</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MEE 205</td>
<td>Basic Thermodynamics</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MTH 201</td>
<td>Mathematical Methods I</td>
<td>MTH101, MTH102</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>STA 201</td>
<td>Statistics for Physical Science & Engineering</td>
<td>-</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CIT 201</td>
<td>Structured Programming</td>
<td>CIT111</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>GNS 201</td>
<td>Nigerian Peoples and Culture</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

200 LEVEL RAIN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE 202</td>
<td>Strength of Materials</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>EEE 202</td>
<td>Applied Electricity II</td>
<td>EEE 201</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>EEE 292</td>
<td>Applied Electricity Laboratory II</td>
<td></td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>MEE 204</td>
<td>Engineering Mechanics II (Dynamics)</td>
<td>MEE 203</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MEE 206</td>
<td>Basic Fluid Mechanics</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MEE 208</td>
<td>Workshop Technology II</td>
<td>MEE 102</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MTH 202</td>
<td>Elementary Differential Equation I</td>
<td>MTH102</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MTH 206</td>
<td>Introduction to Numerical Analysis</td>
<td>MTH101, MTH102</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>CIT 202</td>
<td>Low Level Language</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>GNS 202</td>
<td>Osun Peoples and Culture</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

EEE 200: SWEP (Vacation Period) 8 weeks
300 LEVEL HARMATTAN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 301</td>
<td>Microelectronic Devices & Circuits I</td>
<td>EEE 201</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 303</td>
<td>Electromechanical Devices</td>
<td>EEE 202</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 305</td>
<td>Computational Structures I</td>
<td>EEE 201</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 307</td>
<td>Group Design I</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>EEE 309</td>
<td>Signals & Systems</td>
<td>EEE 201, EEE 202</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 311</td>
<td>Electromagnetic Theory</td>
<td>EEE 202</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 391</td>
<td>Electrotechnics Laboratory</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>MTH 303</td>
<td>Elementary Differential Equation II</td>
<td>MTH201</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>GNS 301</td>
<td>Entrepreneurship Skills Development and Practice</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

300 LEVEL RAIN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 302</td>
<td>Microelectronic Devices & Circuits II</td>
<td></td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 304</td>
<td>Electrical Machines</td>
<td>EEE 303</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 306</td>
<td>Computational Structures II</td>
<td>EEE 305</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 308</td>
<td>Digital Circuit Analysis & Design</td>
<td>EEE 305</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 310</td>
<td>Measurement & Instrumentation</td>
<td>EEE 201, EEE202</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 392</td>
<td>Electrical Machine Laboratory</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>MTH 302</td>
<td>Mathematical Methods II</td>
<td>MTH201</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>GNS 302</td>
<td>Introduction to Logic and Philosophy</td>
<td>-</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

EEE 300: Student Work Experience Programme (Vacation Period) 8 weeks
400 LEVEL HARMATTAN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 401</td>
<td>Electric Power Principles</td>
<td>EEE 303</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 403</td>
<td>Group Design II</td>
<td>-</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>EEE 405</td>
<td>Analog Circuit Design</td>
<td>EEE 302</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 407</td>
<td>Introduction to Control Engineering</td>
<td>EEE 309</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 409</td>
<td>Communication Principles</td>
<td>EEE 309</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 411</td>
<td>Semiconductor Devices</td>
<td>EEE 302</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 491</td>
<td>Telecommunication & Control Laboratory</td>
<td>-</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>CVE 401</td>
<td>Technical Report Writing</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

400 LEVEL RAIN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 400</td>
<td>SIWES</td>
<td></td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
500 LEVEL HARMATTAN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 501</td>
<td>Students Project</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 503</td>
<td>Control System Engineering i</td>
<td>EEE 407</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 505</td>
<td>Probability & Stochastic Processes</td>
<td>STA 201</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 507</td>
<td>Advanced Circuit Techniques</td>
<td>EEE 302</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>CVE 511</td>
<td>Industrial Economics</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>CVE 513</td>
<td>Industrial Law & Management</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Electives: Not less than 3 units from the following:

Communications Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 511</td>
<td>Radio Frequency Electronics</td>
<td>EEE 409</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 513</td>
<td>Wireless Communication</td>
<td>EEE 409</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>

Instrumentation & Control Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 521</td>
<td>Introduction to Modern Control</td>
<td>EEE 407</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 523</td>
<td>Instrumentation Engineering</td>
<td>EEE 310</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>

Power & Machine Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 531</td>
<td>Power Electronic Devices & Circuits</td>
<td>EEE 302</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 535</td>
<td>Power System Engineering I</td>
<td>EEE 401</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
500 LEVEL RAIN SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 502</td>
<td>Students Project</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 504</td>
<td>Digital Signal Processing</td>
<td>EEE 309</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 506</td>
<td>Electrical Services & Energy Utilization</td>
<td>EEE 401</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 508</td>
<td>Application of Electromagnetic Principles</td>
<td>EEE 311</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>EEE 510</td>
<td>Reliability Engineering</td>
<td>-</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>EEE 512</td>
<td>Advanced Computer Programming & Statistics</td>
<td>-</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Electives: Not less than 3 units from the following:

Communications Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 514</td>
<td>Telecommunications Engineering</td>
<td>EEE 513</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 516</td>
<td>Computer Communication</td>
<td>EEE 513</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 518</td>
<td>Communications Theory</td>
<td>EEE 409</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>

Instrumentation & Control Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 522</td>
<td>Control System Engineering II</td>
<td>EEE 503</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 524</td>
<td>Modeling & Simulation of Dynamic Systems</td>
<td>EEE 521</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 526</td>
<td>Introduction to Heuristic Methods in Control</td>
<td>EEE 521</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>

Power & Machine Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Pre-Requisite</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 532</td>
<td>High Voltage Engineering</td>
<td>EEE 401</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>EEE 536</td>
<td>Power System Engineering II</td>
<td>EEE 535</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION (B.Sc. Mathematics)

MEE 101: ENGINEERING DRAWING I (2 UNITS)

Instruments for engineering drawing and their uses. Drawing paper sizes, margins and title blocks. Lettering and types of line, Geometrical instruction bisection of lines and angels and their applications. Polygon, tergency, locus of simple mechanism. Pictorial drawing, isometric, oblique and perspectives. Orthographic
projection. Dimensioning and development of simple shape. Assembly drawing of simple component.

MEE 102: WORKSHOP PRACTICE I (2 UNITS)

General Introduction of facilities in engineering workshops and safety in workshops. Measuring instruments, calipers, micrometers, gauges etc. manual and machine-operated workshop tools for metals and wood work and their care.

MTH 101 GENERAL MATHEMATICS I (Algebra and Trigonometry) (3 UNITS) (L30 HRS, PO: T15HRS)

MTH 102 GENERAL MATHEMATICS II (Calculus) (3 UNITS) (L30, PO: T15)

Pre-requisite: MTH 101

MTH 104 GENERAL MATHEMATICS III (Vectors, Geometry and Dynamics) (3 UNITS) (L30HRS: PO: T15HRS) Pre-requisite: MTH 101

CVE 200 STUDENTS WORK EXPERIENCE PROGRAMME I (2 UNITS)

A practical work programme, during the long vacation, arranged within the campus and its immediate environment to enable the students gain some basic skills in the
profession of engineering in general and student’s chosen field of engineering in particular.

CVE 201: INTRODUCTION TO ENGINEERING AND TECHNOLOGY (1 UNIT)

CVE 202: STRENGTH OF MATERIALS (2 UNITS)

Force equilibrium free body diagrams. Elasticity – concept of stress strain,

CVE 204: ???????????????????????????

EEE 201: BASIC ELECTRICAL ENGINEERING 1 (2 UNITS)

EEE 207: BASIC ELECTRICAL ENGINEERING PRACTICALS (1 UNIT)

Laboratory experiments to demonstrate the application of the theory covered in the courses.

MEE 201: ENGINEERING MATERIALS (2 UNITS)

Physical properties of materials; atomic and molecular structure, bonding forces, structure of materials, wood, cement, plastics, metallic states. Crystals and defects crystal, isotrophy and anisotrophy; essential and desirable properties of engineering materials; physical mechanical, thermal, chemical, technology and electrical properties. Common engineering materials for structures, machine parts/equipment, electrical items, instruments. Factors to be considered in the selection and choice of engineering materials.

MEE 208: WORKSHOP TECHNOLOGY II (2 UNITS)

Introduction to automobiles; main components of automobiles. Fundamentals of engine operation and construction; basic concepts and definitions, engine cycles, principles of operation of valve mechanism, cooling, lubrication, fuel and starting
system, etc maintenance and general servicing of automobiles; daily routine
preventive maintenance, etc. Fault training, trouble shooting and remedies for
ignition fuel, brake systems etc. Fabrication and machining of components from
available drawings. Welding and fabrication, fundamentals of welding, welding
processes, welding joint preparation, welding inspection etc.

MEE 203: ENGINEERING MECHANICS I (STATICS) (2 UNITS)
Statics law of statics, system forces and their properties. Simple problems. Centre
of mass, moment of Enertia, analysis of coplanar forces, friction. Work and energy.
Vectors centre of gravity and centre of mass.

MEE 204: ENGINEERING MECHANICS II (DYNAMICS) - (2 UNITS)
Newton’s laws of motion and their application. Impulse and momentum kinetic
energy. Kinematics of a point, composition and resolution of velocities and
accelerations, relative velocities and acceleration, representation of vectors. Plane
kinematics of a rigid body, angular velocity diagrams applied to simple
mechanisms. Instantaneous centre of rotation. Equation of motion, linear
momentum and moment of momentum. Kinetic energy, moment of inertia.free
vibrations of systems with one or two degrees of freedom including damping.
Tortional vibration – SWEP

MEE 205: BASIC THERMODYNAMICS (2 UNITS)
Definition of basic thermodynamics terminologies system, state, properties and
processes. Energy and energy conversion; work, heat, non-flow processes. Zeroth
law. First law of thermodynamics and application o closed and open systems. The
steady flow energy equation and its applications. Second law of Thermodynamics;
Consequences and applications of second law. Thermodynamics properties of ideal
and real fluids. thermodynamics tables Introduction to steam power and
refrigeration cycles.

MEE 206: BASIC FLUID MECHANICS (2 UNITS)
Element of fluid statics; density, pressure, surface tension, viscosity,
compressibility e.t.c. Hydrostatic forces on submerged surfaces due to
incompressible fluid. Introduction to fluid dynamics – conversion laws.
Introduction to viscious flow. Dynamics of fluid flow – conservation. Equation of
mass and momentum. Euler and Bernonlli’s equations. Reynolds number
Dimensional analysis, similitude, Buckingham P,. Theorems. Application of
hydraulic models. Flow meters and error in measurement.

MTH 201 MATHEMATICAL METHODS I (2 UNITS) (C) (L15HRS: P0:
T15HRS) Pre-requisite - MTH101, MTH102
Real-value functions. Review of Differentiation and integration and their applications.
Mean value theorem, Taylor series. Real-value functions of two or three variables.
Partial derivatives, chain rule, Lagrange multipliers, extrema (maxima and minima),

MTH 202 ELEMENTARY DIFFERENTIAL EQUATIONS I (2 UNITS)
(L15HRS: P 0: T15HRS) Pre-requisite - MTH102

MTH 206 INTRODUCTION TO NUMERICAL ANALYSIS (3 UNITS) (L30HRS: P 0: T15HR) Pre-requisites - MTH101, MTH102

STA 201: STATISTICS FOR PHYSICAL SCIENCES AND ENGINEERING (4 UNITS)

Probability- elements of probability, density and distribution functions, moments, standard distribution, etc. statistics- Regression and correlation- Large sampling theory. Test hypothesis and quality control.

EEE 201 APPLIED ELECTRICITY I
2-1-0 (3 Units)
Ideal Sources and Passive Components
Linear Resistive Networks
Network theorems – Kirchoff’s voltage law (KVL), Kirchoff’s current law (KCL), Norton, Thevenin and Superposition theorems
Non-linear Resistive Networks
Digital Abstraction
Digital Representation and Processing
Energy Storage
Elementary Discussion of Solid State Devices

EEE 202 APPLIED ELECTRICITY II
2-1-0 (3 Units)
Magnetic field of currents in space
Time-varying Signals
Step Response of RC, RL and RLC Circuits
Impulse Response of RC, RL and RLC Circuits
Single-Phase Alternating Current circuits- complex impedance and admittance, resonant circuits
Sinusoidal Steady State Response of RC, RL and RLC Circuits
Magnetic Circuits, mutual inductances, transformers. Introduction to electrical generators and motors.
Introduction to measuring instruments.

EEE 291: APPLIED ELECTRICITY LABORATORY I
0-0-3 (1 Unit)
Laboratory experiments to demonstrate the application of the theory covered in EEE 201.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 292</td>
<td>APPLIED ELECTRICITY LABORATORY II</td>
<td>0-0-3(1 Unit)</td>
<td>EEE 202</td>
</tr>
<tr>
<td>EEE 301</td>
<td>MICROELECTRONICS DEVICES & CIRCUITS I</td>
<td>2-1-0 (3 Units)</td>
<td>EEE 201</td>
</tr>
<tr>
<td>EEE 302</td>
<td>MICROELECTRONICS DEVICES & CIRCUITS II</td>
<td>2-1-0 (3 Units)</td>
<td>EEE 301</td>
</tr>
<tr>
<td>EEE 303</td>
<td>ELECTROMECHANICAL DEVICES</td>
<td>2-1-0 (3 Units)</td>
<td>EEE 202</td>
</tr>
<tr>
<td>EEE 304</td>
<td>ELECTRICAL MACHINES</td>
<td>2-1-0 (3 Units)</td>
<td>EEE 202</td>
</tr>
</tbody>
</table>

Pre-requisites EEE 303

EEE 305: COMPUTATIONAL STRUCTURES I 2-1-0 (3 Units)
Boolean algebra
Information representation
CMOS technology
Combinational Logic
Programmable/Reconfigurable Logic
Sequential Logic
Static D Latch
Clocked Sequential Circuits
Metastability and Arbitration
Control Structures
Fundamentals of Computing

Pre-requisites EEE 201

EEE 306: COMPUTATIONAL STRUCTURES II 2-1-0 (3 Units)
Fundamentals of Computing
Programmable Architecture
Instruction Set Architecture
Machine Model
Machine Language Programming
Computer System Communication Issues
Memory Hierarchy
Operating System Issues

Pre-requisites EEE 305

EEE 307: GROUP DESIGN I (1 Unit)
Students will be divided into groups and assigned mini-design projects to carry out.

EEE 308: DIGITAL CIRCUIT ANALYSIS AND DESIGN 2-1-0 (3 Units)
Review of device models
Digital building blocks
Storage elements and sequential circuits
Circuit techniques for array architectures
Interconnects
Energy consumption
Timing issues
Memory architecture

Pre-requisites EEE 305

EEE 309: SIGNALS AND SYSTEMS 2-1-0 (3 Units)
Classification of Signals and Systems
Systems properties
Fourier series
Fourier transform
Sampling of ICT signals
Sinusoidal modulation
Laplace transforms applications
Feedback systems
z – transform

Pre-requisites EEE 201 & EEE 202
EEE 310: MEASUREMENT & INSTRUMENTATION 2-1-0 (3Units)
Introduction to Signals and Measuring Systems
Modeling of Measuring Systems
Instrument for direct measurement of current and voltage
Measurement of resistance, inductance and capacitance, measurement of electrical energy, power, power factor and frequency. Principle of cathode-ray oscilloscope.
Transducers
Analog Signal Processing
Analog to Digital and Digital to Analogue Conversion
Design of measurement systems, transducers, instrumentation amplifier, differential amplifier circuits, sample-and-hold circuits, multipliers, linear and non-linear converters, Signal recovery. ADCs and DACs, Digital signals processing
Introduction to Biomedical-Electronics and medical instrumentation. Pre-requisites EEE 201 & 202

EEE 311: ELECTROMAGNETIC THEORY 2-1-0 (3 Units)
Review of Electrostatics
Review of Magnetostatic Fields
Ferromagnetic Materials
Boundary Value Problems
Time varying electromagnetic field
Maxwell’s equations, their interpretation and physical significance
Waves: Solution of wave equations
Scattering of waves at boundaries Pre-requisites EEE 202

EEE 391: ELECTROTECHNICS LABORATORY (1 Unit)
Laboratory experiments to demonstrate the application of the theory covered in the courses.

EEE 392: ELECTRICAL MACHINES LABORATORY (2 Units)
Laboratory experiments to demonstrate the application of the theory covered in the courses.

EEE 401: ELECTRIC POWER PRINCIPLES 2-1-0 (3 Units)
Introduction to power systems
Properties of three-phase systems
Energy sources
Components of power generating systems
Transmission line and underground cables
Design and organization of power stations
Power system equipment: standards and safety Pre-requisites EEE 303

EEE 403: GROUP DESIGN II (1 Units)
Students will be divided into groups and assigned mini-design projects to carry out.

EEE 405: ANALOG CIRCUIT DESIGN 2-1-0 (3 Units)
Passive filter design and synthesis. Spectral transforms and their application in the synthesis of high-pass and band-pass filters.
Op Amps as independent sources. The use of independent sources to change the poles and zeroes of transfer functions. Active network realization.

Pre-requisites EEE 302

EEE 407: INTRODUCTION TO CONTROL ENGINEERING 2-1-0 (3 Units)
Control system concepts and components
Models of typical electrical, mechanical, thermal and fluid systems.
Block and signal flow diagrams.
Transfer functions of electrical and control systems
Frequency domain: Introduction to Transfer Functions
Time domain: General state space representation
Time response of systems
Reduction of multiple subsystems
System stability

Pre-requisites EEE 309

EEE 409: COMMUNICATION PRINCIPLES: 2-1-0 (3 Units)
Basic concepts of communication system – Source, channel and user.
Baseband signals and systems analysis: Fourier series, Fourier transforms, impulse response, frequency response, distortion and group delay.
Amplitude Modulation and demodulation methods. Comparison of AM systems.
Angle modulation and demodulation; Wideband and narrowband FM
Sampling principles: theorems and techniques, quantization
Compounding, pulse modulation: PAM, PWM and PCM. Delta modulation, Adaptive delta modulation, differential PCM. Data transmission and reception: Binary ASK, FSK, and PSK: M-ary FSK and PSK, QAM.

Pre-requisites EEE 309

EEE 411: SEMICONDUCTOR DEVICES 3-0-0 (3 Units)
Semiconductor fundamentals
Conduction mechanisms
Poisson and continuity equations
MOS Transistors
PN Junction Diode, Bipolar Junction Transistor
Microwave semiconductor devices
LED, LCD and other optical devices
Integrated circuits (IC): principles and fabrication of semiconductor devices.

Pre-requisites EEE 302

EEE 491: COMMUNICATION AND CONTROL LABORATORY (4 Units)

Pre-requisites EEE 392

EEE 501: FINAL YEAR PROJECT I (3 Units)

EEE 502: FINAL YEAR PROJECT II (3 Units)

EEE 503: CONTROL SYSTEMS ENGINEERING I 2-1-0 (3 Units)
Linear control systems
Stability: Nyquist stability criterion, bode diagram approach, root locus and root contour method
Design of linear servo systems
State-space systems
Compensator design using the bode and root locus methods
Multiple loop feedback systems
Minimization of unwanted disturbance
Single and multi-term electronic controllers
Hydraulic and pneumatic controllers
Sensitivity of control systems

Pre-requisites EEE 407

EEE 504: DIGITAL SIGNAL PROCESSING
Discrete-time systems and sampling
z-transforms
Discrete Fourier Transforms and Fast Fourier Transforms
Digital Processors
Digital Filters
Introduction to spectral analysis
Introduction to adaptive filtering
Introduction to signal compression

Pre-requisites EEE 309

EEE 505: PROBABILITY AND STOCHASTIC PROCESSES:
Introduction to probability
Random variables
Multiple random variables
Functions of random variables
Moments and conditional statistics
Random processes
Correlation functions
Power density spectrum

Pre-requisites STA 201

EEE 506: ELECTRICAL SERVICES AND ENERGY UTILIZATION
Design and organization of power supply: rated voltages and frequency. Types of power consumers and their characteristics, electrical installation in residential and industrial buildings.
Motor control for industrial system: general and special factory drives.
Regulations on installation and operation of electrical equipment. Metering and tariff systems

Pre-requisites EEE 401

EEE 508: APPLICATION OF ELECTROMAGNETIC PRINCIPLES
Impedance matching and tuning: Lumped elements. Quarter-wave impedance transformer. Resonant cavities.
Radio wave propagation: Atmosphere and multipath effects, Signal fading and channel noise.
Antennas: dipole, Loop and monopole; radiation pattern and Antenna arrays

Pre-requisites EEE 409

EEE 511: RADIO FREQUENCY ELECTRONICS
Radio spectrum, ITU and spectrum management, Transmission lines and scattering parameters; Design of RF components (low noise amplifiers, power amplifiers, oscillators, RF power detector, active and passive mixers); Properties and representation of noise; passive device design (microstrip lines); active device design (bipolar and FETs). Parametric amplifiers, Microwaves solid state components; TWT, Klystrons and their applications

Pre-requisites EEE 409
EEE 513: WIRELESS COMMUNICATION 2-1-0 (3 Units)
Tropospheric propagation: Special features of VHF and UHF propagation. Propagation characteristics at microwave frequencies. Design of microwave links system. Effect of ionosphere on radio waves. Satellites communication systems, Multiple access methods in satellite communication. Earth stations for international communications. Mobile radio communications: simplex, half-simplex or full duplex, FDD, TDD cordless telephone system cellular systems: System design fundamentals.

Pre-requisites EEE 409

EEE 514: TELECOMMUNICATIONS ENGINEERING 2-1-0 (3 Units)
Introduction to telephony, signaling. Principles of automatic telephone; strowger and cross bar exchanges, Electronic switching system. Tariff considerations. Telex and facsimile transmission, data transmission. Introduction to television Engineering, Black and white television broadcasting, colour television systems. Cable TV systems

Pre-requisites EEE 513

EEE 516: COMPUTER COMMUNICATIONS 2-1-0 (3 Units)

Pre-requisites EEE 513

EEE 518: COMMUNICATIONS THEORY 2-1-0 (3 Units)

Pre-requisites EEE 409

EEE 521: INTRODUCTION TO MODERN CONTROL 2-1-0 (3 Units)
State Space Modelling: Derivation of Models – Modeling with differential equations, Block diagrams, signals flow graphs.

Pole Placement using State Feedback, Pole Placement using Output Feedback, State Observers/Reduced Order Observers. Application of calculus of variation, dynamic programming and Pontryagin’s maximum principles; Time optimal control system, optimal systems based on the quadratic performance indices LQR/LQG. H_2 and H_{inf} system design, Introduction to Robust Control Design.
Minimum time problem, minimum fuel consumption problem, minimum energy problem. Liapunov second
method and approach to solution of optimal control problems. Model reference control system.
Introduction to Adaptive control system.

Pre-requisites EEE 407

EEE 522: CONTROL SYSTEMS ENGINEERING II 2-1-0 (3 Units)
Non-linear differential equations. Characteristics of non-linear systems; common non-linearities. Analysis of
non-linear systems. Linearizing approximations, piecewise linear approximation, the describing function
concept and derivation for common non-linearities, the dual input describing function; stability using the
describing function. Limit cycle prediction. The phase-plane method for construction of phase trajectories,
transient analysis by the phase method. Stability analysis of non-linear systems using Liapunov method.
Introduction to sample data systems; The z-transforms; pulse transfer function and stability analysis in the z-
plane.

Pre-requisites EEE 503

EEE 523: INSTRUMENTATION ENGINEERING 2-1-0 (3 Units)
Introduction to reliability, maintainability, availability and element reliability theory. Application to power
system and electronic components. Climatic factors affecting reliability of electrical components and devices.
Introduction to the design of electronics equipment. Specification including environmental factors such as
vibration, humidity and temperature. Tolerance and safety measures. Reliability and testing, Duplication of
least reliable parts (standby), Ergonomics, aesthetics and economics. Miniature and micro miniature
construction using printed circuit boards and integrated circuits. Maintainability. Computer based design
methods. Virtual Instrumentation.

Pre-requisites EEE 510

EEE 524: MODELING AND SIMULATION OF DYNAMIC SYSTEMS: 2-1-0 (3 Units)
Introduction to concepts in modeling and simulation
Analog simulations:
Study of differential equations
Generation of time scaling
Simulation of control systems from block diagrams
Transfer functions and state equations
Analog memory and its applications
Repetitive and iterative operation of an analog computer
Digital Simulation:
Comparison of digital and analog/hybrid simulation
Modeling and Simulation software packages
Study of a few algorithms of interest in modeling and simulation: genetic algorithms,
Monte Carlo Techniques etc

Pre-requisites EEE 521

EEE 526: INTRODUCTION TO HEURISTIC METHODS IN CONTROL 2-1-0 (3 Units)
Review of Classical and Modern Control
Digital Control Systems
Hierarchical Control Architectures
Rule-based Systems
Adaptive Control and Self-learning Systems
Fuzzy Logic and its Application in Control
Neutral Network and Neural Control
Genetic Algorithms
Expert and planning Systems

Pre-requisites EEE 521
EEE 531: POWER ELECTRONIC DEVICES AND CIRCUITS 2-1-0 (3 Units)
Introduction to power semiconductor components: Power rectifier and circuits; half wave, full wave and three phase full wave rectifier circuit, controlled rectifier circuits; one phase one half wave, full wave three phase, half and full wave controlled rectifier circuits. Voltage-time area analysis; single phase and polyphase inverter circuits, harmonic analysis.
Chopper circuits: Types A and B. Four quadrant chopper circuits, A.C to A.C converters, A.C to D.C transmission links. Application of power semi-conductor circuits; regulated power supplies, uninterruptible power supplies, d-c and a-c drives. Induction heating and relays.

Pre-requisites EEE 302

EEE 532: HIGH VOLTAGE ENGINEERING 2-1-0 (3 Units)
Concept of breakdown in gases, vacuum, liquids and solids;
Insulation of overhead line and substation, busbars, and circuit breakers insulation. Insulation of transformers, generators, cable and condensers. Preventive testing of insulation, processes in a multi-layer dielectric, measurement of tan δ, capacitance, partial discharge voltage distribution, leakage resistance.

Pre-requisites EEE 401

EEE 535: POWER SYSTEM ENGINEERING I 2-1-0 (3 Units)
Overhead Transmission Lines:
Transmission line parameters (R, L and C) calculations. Equivalent circuits of transmission line, Underground types and parameters.
Modeling of Power Components
Transformers, transmission lines and synchronous machines;
System Modeling
Per unit calculations, network matrices
Power Flow Analysis
Gauss Siedel, Network-Raphson, and Fast decoupled methods
Control of voltage, real and reactive power in load flow problems
Faults in Power Systems:
Short-circuit analysis of synchronous machines. Synchronous and unsymmetrical fault analysis.

Pre-requisites EEE 401

EEE 536: POWER SYSTEMS ENGINEERING II: 2-1-0 (3 Units)
System Stability:
Transient stability swing equation, equal area criterion, multimachine stability, power system stabilizers.
Automatic Generation Control and Voltage Regulation:
Circuits breakers, relays, instrument transformers, protective schemes control circuits. Protection of transmission lines, transformers, generators and motors. Automatic reclosure and cut-in of standby supply.
Power System Planning:
Station management and maintenance routine.

Pre-requisites EEE 535